Soalberbentuk pilihan ganda dengan jumlah soal 40 butir dilengkapi dengan kunci jawaban. Himpunan bilangan cacah genap antara 2 dan 10 adalah . a. {4, 6, 8} b. {3, 5, 7, 9} {bilangan cacah kurang dari 1} d. {bilangan ganjil yang habis dibagi 2} Soal nomor 8. Berikut ini yang bukan merupakan himpunan bagian dari K = {1, 2, 3}
Bilangan Ganjil Dan GenapPengertian Bilangan Ganjil dan Genap beserta Contohnya β Bilangan ganjil dan genap merupakan pengelompokan dari bilangan bulat, baik bilangan bulat positif maupun bilangan bulat negatif. Sehingga, bilangan ganjil dan bilangan genap adalah himpunan bagian dari bilangan bulat. Untuk lebih jelasnya, simak pembahasan berikut ini mengenai pengertian bilangan ganjil dan genap beserta contohnya itu bilangan ganjil? Bilangan ganjil adalah bilangan bulat yang tidak habis dibagi dua. Himpunan bilangan ganjil dilambangkan dengan huruf definisi lainnya, pengertian bilangan ganjil adalah bilangan bulat dalam bentuk 2n + 1, dimana n adalah bilangan bulat. Jika dituliskan, maka anggota himpunan bilangan ganjil adalah sebagai berikutL = {β¦, -9, -7, -5, -3, -1, 1, 3, 5, 7, 9, β¦}Untuk memudahkan dalam menentukan apakah suatu bilangan merupakan himpunan bilangan ganjil atau bukan, perhatikan ciri-ciri bilangan ganjil berikut iniTidak habis dibagi 2Berakhiran dengan angka 1, 3, 5, 7, 9ContohAngka 21 ganjil apa genap?PembahasanKita akan bahas melalui ciri-cirinya,21 2 = 10,5 tidak habis dibagi 2, karenan menghasilkan bilangan pecahan desimal21 berakhiran dengan angka 1Maka angka 21 adalah bilangan ganjilContohAngka 12 ganjil apa genap?PembahasanKita akan bahas melalui ciri-cirinya,12 2 = 6 habis dibagi 212 tidak berakhiran dengan angka 1, 3, 5, 7, 9Maka angka 12 bukanlah bilangan ganjil merupakan bilangan genapContoh Bilangan GanjilBilangan ganjil positifL = {1, 3, 5, 7, 9, β¦}Bilangan ganjil negatifL = {β¦, -9, -7, -5, -3, -1}Bilangan ganjil antara 1 dan 10L = {3, 5, 7, 9}Bilangan ganjil antara 10 dan 20L = {11, 13, 15, 17, 19}Bilangan ganjil positif kurang dari 15L = {1, 3, 5, 7, 9, 11, 13}Bilangan ganjil antara -10 dan 10L = {-9, -7, -5, -3, -1, 1, 3, 5, 7, 9}Bilangan ganjil 1-100L = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99}Pengertian Bilangan GenapBilangan genap adalah bilangan bulat yang habis dibagi dua. Himpunan bilangan genap dilambangkan dengan huruf definisi lainnya, pengertian bilangan genap adalah bilangan bulat dalam bentuk 2n, dimana n adalah bilangan bulat. Jika dituliskan, maka anggota himpunan bilangan genap adalah sebagai berikutN = {β¦, -10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10, β¦}βSecara khusus, 0 merupakan bilangan genap.βUntuk memudahkan dalam menentukan apakah suatu bilangan merupakan bilangan genap atau bukan, perhatikan ciri-ciri bilangan genap berikut iniHabis dibagi 2Berakhiran dengan angka 0, 2, 4, 6, 8ContohAngka 18 genap apa ganjil?PembahasanKita bahas melalui ciri-cirinya,18 2 = 9 habis dibagi 218 berakhiran dengan angka 8Maka angka 18 adalah bilangan genapContohAngka 81 genap apa ganjil?PembahasanKita bahas melalui ciri-cirinya,81 2 = 40,5 tidak habis dibagi 2, karenan menghasilkan bilangan pecahan desimal81 tidak berakhiran dengan angka 0, 2, 4, 6, 8Maka angka 81 bukan bilangan genap merupakan bilangan ganjilContoh Bilangan GenapBilangan genap positifN = {2, 4, 6, 8, 10, β¦}Bilangan genap negatifN = {β¦, -10, -8, -6, -4, -2}Bilangan genap antara 1 dan 10N = {2, 4, 6, 8}Bilangan genap antara 10 dan 20N = {12, 14, 16, 18}Bilangan genap positif kurang dari 15N = {2, 4, 6, 8, 10, 12, 14}Bilangan genap antara -10 dan 10N = {-8, -6, -4, -2, 0, 2, 4, 6, 8}Bilangan genap 1-100N = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100}Demikianlah pembahasan mengenai pengertian bilangan ganjil dan genap beserta contohnya masing-masing. Semoga bermanfaat dalam mempelajari jenis-jenis bilangan Lagi Macam-Macam Bilangan Bulat Dan ContohnyaPengertian Bilangan Rasional Dan Irasional beserta ContohnyaBilangan Cacah, Bilangan Bulat, dan Bilangan AsliOperasi Hitung Bilangan Bulat Sifat, Rumus dan ContohnyaCara Membuat Garis Bilangan Dan Penggunaannya Bilangangenap 1-100 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100 Bilangan genap positif 2, 4, 6, 8, 10, 12, 14, 16, 18, Bilangan genap negatif , -10, -8, -6, -4, -2 Bilangan genap kurang dari 11 1. Jumlah semua bilangan asli diantara 1 dan 100 yang habis dibagi 4 tetapi tidak habis dibagi 3 adalah β¦. A. 432 B. 768 C. 786 D. 1200 E. 1218 Soal ini masuk ke dalam B. Kemampuan Numerik. Bilangan antara 1 dan 100 yang berarti 1 dan 100 tidak ikut dihitung yang habis dibagi 4 4, 8, 12, β¦, 96 Ini termasuk ke dalam deret Aritmetika, dengan a suku pertama = 4, b beda = 4, dan suku terakhir Un = 96. dimana, Un = a + n-1b 96 = 4 + 4n β 4 4n = 96 n = 24 Sn = n/2 a + Un S24 = 24/2 4 + 96 S24 = = 1200 βββββββββββ Bilangan antara 1 dan 100 yang habis dibagi 3 yaitu 3, 6, 9, 12, β¦, 99. karena soal diminta tidak habis dibagi 3, kita harus mencari bilangan habis dibagi 3 dan sekaligus bilangan dapat dibagi 4, untuk mengurangi hasil jumlah bilangan habis dibagi 4 sehingga didapatlah βbilangan yang habis dibagi 4 tetapi tidak habis dibagi 3β KPK antara bilangan 4 dan 3 yaitu 12 sehingga barisan bilangan habis dibagi 3 yang juga bilangan habis dibagi 4 adalah sbb 12, 24, 36, β¦, 96. dengan a = 12, b = 12, Un = 88 Un = a + n-1b 96 = 12 + 12n β 12 12n = 96 n = 8 Sn = n/2 a + Un S8 = 8/2 12 + 96 S8 = 4 . 108 = 432 Jadi, Jumlah semua bilangan asli diantara 1 dan 100 yang habis dibagi 4 tetapi tidak habis dibagi 3 adalah 1200 β 432 = 768 jawaban B. 768 2. Indonesia β Australia = 12 β 36, Sulawesi β Jeneponto = β¦ A. -88 B. -13 C. -24 D. 3 E. 44 Pembahasan INDONESIA β AUSTRALIA [Konsonan β Vokal] β [Konsonan β Vokal] [14 + 4 + 14 + 19] β [9 + 15 + 5 + 9 + 1] β [19 + 20 + 18 + 12] β [1 + 21 + 1 + 9 + 1] [51] β [39] β [69] β [33] 12 β 36 SULAWESI β JENEPONTO [Konsonan β Vokal] β [Konsonan β Vokal] [19 + 12 + 23 + 19] β [21 + 1 + 5 + 9] β [10 + 14 + 16 + 14 + 20] β [5 + 5 + 15 + 15] [73] β [36] β [74] β [40] 37 β 34 = 3 Jadi, jawab D. 3 3. Ibrahim = 8, Ismail = 7. Nilai Ramdani = β¦ A. 8 B. 7 C. 24 D. 59 E. 44 Pembahasan IBRAHIM -> Terdiri dari 7 huruf = 8. Berarti 7 + 1 = 8 ISMAIL -> Terdiri dari 6 huruf = 7. Berarti 6 +1 = 7 RAMDANI -> Terdiri dari 7 huruf = β¦ Berarti 7 +1 = 8 Jawaban A. 8 4. Dea = 10, Duta = 46. Nilai Crosby = β¦ A. 75 B. 69 C. 82 D. 39 E. 94 Pembahasan D = 4 E = 5 A = 1 DEA = 4 + 5 + 1 = 10 D = 4 U = 21 T = 20 A = 1 DUTA = 4 + 21 + 20 + 1 = 46 CROSBY = 3 + 19 + 15 +19 + 2 + 25 = 82 Jadi, jawab adalah C. 82 5. Berat jenis air yang paling besar adalah pada suhuβ¦ A. 0 derajat B. 100 derajat C. 4 derajat D. 273 derajat E. -4 derajat Pembahasan Misteri air terungkap ketika para ilmuwan fisika mempelajari tentang suhu dan kalor. Mereka mengamati, bahwa semua zat akan memuai jika dipanaskan. Tetapi air mempunyai keanehan dalam hal ini. Air ternyata malah menyusut jika dipanaskan dari suhu 0 ke 4 derajat Celsius. Ketika air menyusut massa air tetap, sedangkan volumenya berkurang, sehingga massa jenis air akan bertambah. Ingat massa jenis = massa/volume Sifat anomali air adalah keanehan air yang menyusut ketika dipanaskan antara suhu 0 sampai 4 derajat Celsius. Massa jenis air terbesar diperoleh pada suhu 4 derajat Celsius, karena pada suhu ini air memiliki volume yang paling kecil. Berat jenis adalah perbandingan relatif antara massa jenis sebuah zat dengan massa jenis air murni. Air murni bermassa jenis 1 g/cmΒ³ atau 1000 kg/mΒ³. Berat jenis tidak mempunyai satuan atau dimensi. Berat jenis mempunyai rumusn atau w/v dengan satuan n/m^3 dengan m = massa, g = gravitasi, v = volume dan w = weight berat. Dapat disimpulkan berat jenis sebanding dengan massa jenis. Sehingga, berat jenis air yang paling besar adalah pada suhu 4 derajat Jawab C. 4 derajat 6. 1 β 3 β 5 β 15 β 17 β β¦. β β¦ A. 19, 21 B. 31, 37 C. 51, 53 D. 20, 32 E. 21,34 Pembahasan 1 x 3 = 3 β- 3+2 = 5 5 x 3 = 15 β- 15+2 = 17 17 x 3 = 51 β- 51+2 = 53 53 x 3 = 159 β- 159+2 = 161 Jadi, jawab adalah C. 51, 53 7. 8 β 32 β 16 β 24 β β¦ A. 128, 64 B. 64, 128 C. 72, 120 D. 120, 72 E. 123,74 Pembahasan 8 x 2 = 16 [2] 8 x 3 = 24 [3] 8 x 4 = 32 q q β> r βββ Kesimpulan p β> r Jika nasi goreng disajikan, maka buah-buahan disajikan. Akan tetapi kesimpulan tersebut tidak ada pada option jawaban, sehingga yang kita cari adalah pernyataan yg ekuivalen atau setara dgn pβ> r Sehingga p β> r = ~r β> ~p Ekuivalensi atau setara. ini juga menjadi rumus kontraposisi Jadi kesimpulannya p β> r = ~r β> ~p = Jika buah-buahan tidak disajikan maka nasi goreng tidak disajikan ============================== =================== Rumus ekuivalensi pernyataan setara yang perlu teman-teman ingat p β> q = ~p V q = ~q β> ~p 9. MENGUAP β¦ = β¦ SAKIT A. panas badan B. lelah β dokter C. mengantuk β demam D. tidur β istirahat E. tempat tidur β obat Pembahasan Buat menjadi sebuah kalimat Menguap tanda mengantuk, sedangkan demam tanda sakit Jawab C. mengantuk β demam 10. Bu Revi membagikan tanah warisan sebnyak 5 ha. kepada 5 org anaknya. Rana mendapat 26% tanah, Rini mendapat 85 are, Reni mendpat 12/15 dr Rani, Rina mendapatkan dua kali dr Rani. Siapa yang lebih kaya dari Rini? A. Rana dan Reni B. Rana dan Rani C. Rana dan Rina D. Rina dan Reni E. Hanya Rana saja Pembahasan 5 ha = 500 are Rana = 26% . 500 are = 130 are Rini = 85 are Reni = 12/15 . Rani Rina = 2 . Rani Rani = Rani Reni Rani Rina = 12 15 30 = 4 5 10 Reni = 4/19 . 285 = 60 Rani = 5/19 . 285 = 75 Rina = 10/19 . 285 = 150 Jadi, yang lebih kaya dari Rini adalah Rana dan Rina. Jawab C. Rana dan Rina 11. Antonim insinuasi A. Terang2an B. Caci-maki C. Rayuan D. Pujian E. Sembunyi-sembunyi Pembahasan inβ’siβ’nuβ’aβ’si n tuduhan tersembunyi, tidak terang-terangan, atau tidak langsung; sindiran; Jadi, antonim lawan makna/lawan kata dari insiuasi adalah A. Terang2an 12. Jika x = 2y, y = 3z, dan x y z = 3888, maka A. x 8 x 7 = 56 7 adalah 42 -> 7 x 6 = 42 6 adalah 30 -> 6 x 5 = 30 5 adalah 20 -> 5 x 4 = 20 4 adalah 12 -> 4 x 3 = 12 3 adalah -> 3 x 2 = 6 jadi, jawab adalah B. 6 15. Amir punya uang setengah uang Budi. Jika Budi memberi 500 ke Amir, maka Amir punya uang 400 lebih sedikit dari Budi. Berapa jumlah uang mereka? A. 2300 B. 2700 C. 4200 D. 4800 E. 5100 Pembahasan B = x -> x β 500 A = 1/2 x -> 1/2x + 500 A β B = 400 x β 500 β 1/2x + 500 = 400 1/2x β 1000 = 400 1/2x = 1400 A x = 2800 B Sehingga A = 1400 + 500 = 1900 Sehingga B = 2800 β 500 = 2300 Jumlah uang mereka adalah A + B = 1900 + 2300 = 4200 jawab adalah C. 4200 16. Kuman penyakit = Api A. Arang B. Panas C. Merah D. Kebakaran Pembahasan untuk mudahnya, buat menjadi sebuah kalimat, Kuman menyebabkan penyakit, sedangkan Api menyebabkan kebakaran Jadi, jawab adalah D. Kebakaran 17. Seorang pedagang menjual kain dengan harga 80 ribu dan memperoleh laba 25% dari harga beli. Berapakah harga beli kain? A. 100 rb B. 96 rb C. 64 rb D. 80 rb E. 120 rb Pembahasan ini dengan melogikan saja sudah bisa menjawab. Harga beli pasti lebih rendah di banding kan harga Jual kan untuk laba? Harga jual saja 80 ribu, pasti harga belinya dibawah 80 ribu. dan ternyata opsi dibawah 80 ribu cuma 1, ya udah itu jawabnya QzluxH.